FA4TM \& FA9TE

FLANGE ALIGNMENT TOOLS

Operator Instruction Manual

INDEX
SECTI ON CONTENTS
PAGE NO.
1 INTRODUCTION 2
2 SAFETY INFORMATION 3-4
3 TECHNICAL DATA 5
4 FLANGE MISALIGNMENT DETERMINATION PROCEDURE 6
4.1 LATERAL MISALIGNMENT 6
4.2 ROTATIONAL (TWIST) MISALIGNMENT 7
5 FA4TM MECHANICAL FIXED FLANGE AND ROTATIONAL ALIGNMENT TOOL
5.1 KIT COMPONENTS 8
5.2 HOW THE FA4TM WORKS 8
5.3 INSTALLATION AND OPERATION 9-12
5.4 EXAMINATION, MAINTENANCE AND STORAGE 13-14
5.5 PARTS LIST 15
5.6 WEIGHTS AND DIMENSIONS 16
5.7 TROUBLESHOOTING 17
5.8 APPLICATION DIMENSIONS 18
6. FA9TE HYDRAULIC FIXED FLANGE AND ROTATIONAL ALIGNMENT TOOL
6.1 KIT COMPONENTS 19
6.2 HOW THE FA9TE WORKS 19
6.3 INSTALLATION AND OPERATION 20-22
6.4 EXAMINATION, MAINTENANCE AND STORAGE 23-24
6.5 PARTS LISTS 25-27
6.6 WEIGHTS AND DIMENSIONS 28
6.7 TROUBLESHOOTING 29-30
6.8 APPLICATION DIMENSIONS 31
7. RANGE OF APPLICATION
7.1 BS10, API6BX AND API6B FLANGE TABLES 32
7.2 ASME B16.5, B16.47 AND DIN WELD NECK FLANGE TABLES 33
7.3 SPO FLANGE TABLE 34

1. INTRODUCTION

The Equalizer FA4TM and FA9TE TOOLS are aids for use in normal maintenance and installation procedures, and enable the realignment of misaligned flanges within their respective working capacities. For example, all of the tools can be used to assist in the replacement of ring and other types of flange joint. The use of these instructions will promote safe use, and maximize the service life of the tools. It is recommended that the operator read the relevant sections of this instruction manual for the particular flange alignment tool to be used.

2. SAFETY INFORMATION

The operator MUST read this manual prior to using the tools.

Failure to comply with the following cautions and warnings could cause equipment damage and personal injury; read the manual fully!

Read all the following instructions, warnings and cautions carefully. Follow all safety precautions to avoid personal injury or property damage during system operation.

Equalizer International Ltd cannot be responsible for damage or injury resulting from unsafe product use, lack of maintenance or incorrect product and/or system operation. Contact Equalizer International Ltd when in doubt as to the safety precautions and applications. To protect your warranty, use only good quality hydraulic oil of the grade 15 cSt .

Only people competent in the use of mechanical and hydraulic equipment should use these tools.

In all installations the site safety requirements must be adhered to. ALSO the safety of the operator, and when present, any assisting personnel, is of paramount importance along with the safety of others including, when present, the general public.

These instructions are only to cover the safe operation of THE EQUALIZER FA4TM AND FA9TE FLANGE ALIGNMENT TOOLS, during normal maintenance/installation operations. All other safety aspects must be controlled by the operation supervisor.

A CAUTION is used to indicate correct operating or maintenance procedures and practices to prevent damage to, or destruction of equipment or other property.

A WARNI NG indicates a potential danger that requires correct procedures or practices to avoid personal injury.
A DANGER is only used when your action or lack of action may cause serious injury or even death.

I MPORTANT: Operator must be competent in the use of hydraulic equipment. The operator must have read and understood all instructions, safety issues, cautions and warnings before starting to operate the Equalizer equipment.

WARNING: To avoid personal injury and possible equipment damage, make sure all hydraulic components are rated to a safe working pressure of 700 bar ($10,000 \mathrm{psi}$)

WARNI NG: Do not overload equipment. Overloading causes equipment failure and possible personal injury.
The risk of overloading can be avoided by using the Equalizer Hand Pump, which has its safety valve set to 700 bar by the factory. If alternative pumps are used, ensure they are rated at a safe working pressure of $700 \mathrm{bar}(10,000 \mathrm{psi})$.

CAUTION: Make sure that all system components are protected from external sources of damage, such as excessive heat, flame, moving machine parts, sharp edges and corrosive chemicals.

CAUTION: Avoid sharp bends and kinks that will cause severe back-up pressure in hoses. Bends and kinks lead to premature hose failure. Do not drop heavy objects onto hoses. A sharp impact may cause internal damage to hose wire strands; applying pressure to a damaged hose may cause it to rupture. Do not place heavy weights on the hoses, or allow vehicles to roll over the hoses; crush damage will lead to premature hose failure.

WARNING: Immediately replace worn or damaged parts with genuine Equalizer parts. Equalizer parts are designed to fit properly and withstand rated loads. For repair or maintenance service contact your Equalizer distributor or service centre.

DANGER: To avoid personal injury keep hands and feet away from the tool and workpiece during operation.

WARNI NG: Always wear suitable clothing and Personal Protective Equipment (PPE).

DANGER: Do not handle pressurised hoses. Escaping oil under pressure can penetrate the skin, causing serious injury. If oil is injected under the skin, seek medical attention immediately.

WARNI NG: Never pressurize unconnected couplers. Only use hydraulic equipment in a connected system.

IMPORTANT: Do not lift hydraulic equipment by the hoses or couplers. Use the carrying handle or other means of safe transport.

CAUTION: Do not operate the equipment without lubricating all moving parts as in section 5.4, $6.4 \& 7.4$. Use only high pressure molybdenum disulphide grease.

3. TECHNICAL DATA

	Tool Description	Aligning Force
FA4TM	Mechanical Fixed Flange and Rotational Alignment Tool	$4.0 \mathrm{~T}(40 \mathrm{kN})$ from $50 \mathrm{ft} / \mathrm{lbs}(67.8 \mathrm{Nm})$ of torque
FA9TE	Hydraulic Fixed Flange and Rotational Alignment Tool	$9.0 \mathrm{~T}(90 \mathrm{kN})$ from $10,000 \mathrm{psi}(700 \mathrm{bar})$ of hydraulic pressure

4. FLANGE MISALIGNMENT DETERMINATION PROCEDURE

The tool being used must not be attached to a flanged joint prior to the misalignment procedure being carried out.

4.1 LATERAL MISALIGNMENT

1. Loosen and remove every second bolt around the flange, continue with this until misalignment occurs.

A flanged joint, once broken down, may spring out of alignment at any point, or in any direction around its circumference. Misalignment may not occur until only a few bolts remain.
2. At this point the direction of any misalignment should become obvious. The alignment tool being used should be attached at the maximum point of misalignment (point A or B in the examples shown below).

4.2 ROTATIONAL (TWIST) MISALIGNMENT

If the outer circumference of the flanges are in alignment but the operator is unable to fit the bolt into any two corresponding bolt-holes then rotational misalignment may have occured.

In this case the alignment tool can be attached to the most accessible point as misalignment occurs at all bolt-holes to the same degree.

1. Attach the alignment tool at the most accessible/convenient point (as shown in sections) and use it to push the flanges out of alignment until one pair of bolt-holes becomes parallel.

2. Insert the bolt into the aligned bolthole and release the alignment tool. The load will transfer onto the bolt.

3. Repeat steps 1 and 2 at other points around the flange until all of the remaining bolt-holes are parallel and the rest of the bolts can be inserted.

5. FA4TM MECHANICAL FIXED FLANGE AND ROTATIONAL ALIGNMENT TOOL

5.1 KIT COMPONENTS

$1 \times$ FA4TM Tool
$1 \times 50 \mathrm{ft} / \mathrm{lbs}(67.8 \mathrm{Nm})$ Torque Wrench with 22 mm Socket $1 \times$ Ratchet and Strap
$1 \times$ Instruction Manual
$1 \times$ Carry-Case
Product Code: FA4TMSTD

5.2 HOW THE FA4TM WORKS

1. The FA4TM is secured to the lower of the two flanges by fully inserting the lift hook into the bolt-hole at the point of greatest misalignment.
2. The drop leg is adjusted down to the pipe while the tool is held level in the bolt-hole
3. The wing retaining screw is loosened to allow the wing to be extended out.
4. The screw bolt is turned clockwise until the friction pad comes into contact with the circumference of the opposite flange.
5. The torque wrench is set to $50 \mathrm{ft} / \mathrm{lbs}$ (max), attached to the screw bolt and turned to screw down on the flange, bringing the joint into alignment.

5.3 INSTALLATION AND OPERATION

How to use the torque wrench
Balance the wrench in your left hand and unlock the knurled handle by turning the locking knob anti-clockwise. Set the torque amount by turning the knurled handle - see example 40-46 N / m

1. Turn the handle till 0 on fine scale reach $40 \mathrm{~N} / \mathrm{m}$ on base scale
2. To set 46 turn handle till fine scale reach 6
3. Lock handle by turning the locking knob clockwise

Install the proper socket and attach to the tool. Pull handle till you feel and/or hear the wrench click. Setting of $\mathrm{ft} / \mathrm{lb}$ scale is done in the same way as above.

Do not pull after the wrench clicks. Use special care at low torque settings. If the wrench has not been used for some time: operate it several times at low torque to allow internal lubricant to recoat. When not in use set to lowest torque setting. Don't turn handle below lowest torque setting. Your torque wrench is a precision measuring instrument and should be treated as such. Clean only by wiping, do not use any type of cleaner which may affect the special internal lubricant with which this wrench is packed at the factory.

1. Do not attempt to turn the grip while it is locked
2. Do not turn the grip more than one turn below the lowest scale reading or above the highest scale reading
3. Carry out the Flange Misalignment Determination Procedure (see section 4) to determine the points of maximum misalignment.

In this example the points of maximum misalignment are at the top and bottom of the joint.

2. Guide the lift hook into the bolt-hole at the maximum point of misalignment.

Adjust the drop leg down onto the pipe by turning the adjusting knob in a clockwise direction. The tool should be held up level within the bolt-hole during adjustment.
N.B. The tool must be parallel to the
 pipe at all times.
 level and that the friction pad on the base of the swivel is in full and even contact with the surface of the opposite flange.
4. Attach the hook of the strap through the buckle on top of the base plate as shown.

5. Now place the hook of the ratchet mechanism through the opposite side of the buckle as shown.

6. Feed the open end of the strap through the ratchet mechanism as shown. Tighten the strap using the ratchet mechanism.

7. The torque wrench should be set at $14 \mathrm{ft} / \mathrm{lbs}(19 \mathrm{Nm})$ then attached to the screw bolt

8. Tighten the screw bolt in a clockwise direction until the flanges come into alignment; or the torque wrench "clicks"
If the torque wrench has clicked and the flanges are still mis-aligned adjust the torque wrench up to $24.2 \mathrm{ft} / \mathrm{lbs}(33 \mathrm{Nm})$ and continue until a maximum torque wrench setting of $50 \mathrm{t} / \mathrm{lbs}(67.8 \mathrm{~N} / \mathrm{m})$ is reached or the flanges are aligned.

The maximum safe
Once in alignment the bolts may be inserted and tightened.
working load is 50
$\mathrm{ft} / \mathrm{lbs}(67.8 \mathrm{~N} / \mathrm{m})$
exceeding $50 \mathrm{ft} / \mathrm{lbs}$ will result in damage to the tool

After replacing all of the bolts (apart from the bolt which will go into the bolt-hole in which the FA4TM is located), remove the tool by reversing steps 2-8.

Insert the last bolt and tighten.

Care should be taken not to drop any of the component parts when removing them from the flange joint. This action will prevent injuries to either the operator's lower limbs, or to passers-by.

5.4 EXAMINATION, MAINTENANCE AND STORAGE

- On return from each job and before allocation against subsequent work the completeness of the Equalizer FA4TM kit must be established and items examined to ensure that they are serviceable
- Any missing or damaged items are to be replaced as soon as possible and prior to the tool being used again
- \quad Store the FA4TM in a cool dry place and ensure all machined surfaces are greased
- Return all items to carry case when not in use
- Ensure rollers, pins and wing remain grit free and that the rollers rotate freely
- Grease all moving parts regularly:

1. Secure the tool upright on a bench.
2. Using a small flat screw driver, lever out the end of the spiral clips and then rotate anti-clockwise and remove.
3. Slide the roller shafts out in order to remove the rollers and bearings for examination.
4. Inspect the roller shafts, rollers and bearings for damage. If there is no damage present then they can be cleaned, greased and re-assembled by reversing steps 1-4

Recommended grease -

Hi-load bearing grease
e.g. Rocol Saphire hi-load
5. It is important that the thrust bearing is free from dirt and corrossion and rotates freely.
6. With the use of a penatrating oil such as WD 40 or similar. Spray the oil between the thrust plate and the swivel as shown opposite.

7. Ensure the thrust plate rotates freely before using the tool to align a flange jont.

5.5 PARTS LIST

ITEM NO.	PARTNO	DESCRIPTION	QTY.
1	$220500-01$	ROWER SHAFT	2
2	$230802-01$	BUC KLE	1
3	$230803-01$	ROUND BASE PAD	1
4	$400301-01$	SCREW BOLT	1
5	$400401-01$	SPRING CLIP	1
6	$220300-01$	SWIVEL	1
7	$220400-01$	FRICTION PAD	1
8	$401501-01$	NEEDLE BEARING	2
9	$401601-01$	OUTER RO WER	2
10	$404701-01$	THRUSTRACE	1
11	$404801-01$	THRUSTWASHER	2
12	$901601-01$	SPIROL CLIP	4
13	$220100-01$	MAIN BODY	1
14	$401001-01$	SUDING ARM ASS	1
15	$220700-01$	LEG SCREW EXTENSION	1
16	$220600-01$	LEG SCREW	1
17	$402601-01$	CTRS SCREW M6X10	3
18	$212000-01$	SPRING RING 8MM	1
19	$070270-01$	BODY PLATE STICKER LEFT	1
20	$070271-01$	BODY PLATE STIC KER RIGHT	1
21	$070004-01$	LOG FOR WING	1
22	$070272-01$	EQUALIFR LOGO FOR BOSS	1
23	$070273-01$	DROP LEG KNOB STICKER	1
24	$220602-01$	SPIROLCLP	1
25	$300401-01$	M5 SC KTSET SC REW	1

5.6 WEIGHTS AND DIMENSIONS

WEIGHTS

Tool only	$=8.6 \mathrm{~kg}(18.96 \mathrm{lbs})$
Torque wrench/socket	
Plastic Carry-Case	
	$=2.9 \mathrm{~kg}(1.98 \mathrm{lbs})$
GROSS KIT WEIGHT	

DIMENSIONS

MINIMUM EXTENSION

5.7 TROUBLESHOOTING

Problem: The thrust plate is sliding along the circumferance of the opposite flange as the tool is aligning the joint
Grit or Dirt on wing, rollers or
bearings

Wing is at full extension

Ensure the rollers are rotating freely and that there is no restrictions to the rollers on the wing surfaces such as grit or dirt

Ensure the wing has sufficient travel left in order to allow the joint to align

Problem: The tool is attached and appears to be functioning properly, but the joint will not align

There may be something restricting the joint from aligning

The joint may require more than 4.0T (40 kN) force to align

Check the area around the joint to establish if there is an obstruction to the joint

If the joint requires more force than that of the $4.0 \mathrm{~T}(40 \mathrm{kN})$ tool, then another method of aligning should be adopted

Problem: The thrust plate is twisting on the circumferance of the flange when the screw bolt is tightened

There may be Grit or Dirt within the swivel / thrust plate

Check that the thrust plate rotates freely. If the thrust plate is not rotating then spray some penetrating liquid into the gap betweeen the swivel and thrust plate in order to loosen it

5.8 APPLICATION DIMENSIONS

MINIMUM AND MAXIMUM FLANGE SIZES
Dimension A: must be between 30 and 133 mm (1.18" and 5.23")
Dimension B: bolt-hole diameter must be $24 \mathrm{~mm}(0.95 \prime$) or greater

6. FA9TE HYDRAULIC FLANGE ALIGNMENT TOOL

6.1 KIT COMPONENTS

$1 \times$ FA9TE Tool c/w 6T Hydraulic Cylinder
$1 \times 10,000$ psi (700 bar) Hydraulic Hose, $2 m$ (78.75")
$1 \times 10,000$ psi (700 bar) HP350S Sealed
Hand Pump with Gauge
1 x Instruction Manual
$1 \times$ Carry-Case
1 x Ratchet \& Strap

Product Code: FA9TESTD

6.2 HOW THE FA9TE WORKS

1. The FA9TE is secured to the lower of the two flanges by fully inserting the lift hook into the bolt-hole which is parallel with the bolt-hole at the point of greatest misalignment.
2. The drop leg is adjusted down onto the pipe while the tool is held up level in the bolt hole.
3. The release knob should be loosened to allow the wing to be extended out to the required distance.
4. The hydraulic cylinder should then be adjusted down onto the circumference of the flange opposite by rotating it in a clockwise direction.
5. The hydraulic hose and pump are attached to the cylinder and the hand pump is primed, bringing the joint into alignment.

6. Carry out the Flange Misalignment Determination Procedure (see section 4) to determine the points of maximum misalignment.

In this example the points of maximum misalignment are at the top and bottom of the joint.

2. Guide the lift hook into the bolt-hole at the maximum point of misalignment.

Adjust the drop leg onto the pipe (using the adjusting knob) while holding the lift hook up level with the bolt-hole.

3. Loosen the wing release knob and

N.B. Ensure tool is parallel to pipe.
4. Attach the hook on the strap through the base plate as shown.

5. Now place the hook of the ratchet mechanism through the base on the opposite side as shown.

6. Feed the open end of the strap through the ratchet mechanism as shown. Tighten the strap using the ratchet mechanism.

7. Connect the hydraulic pump to the hydraulic hose, and the hose to the hydraulic adjusting cylinder.

Prime the pump until the joint comes into alignment.

8. Once in alignment the bolts may be inserted and tightened.

After replacing all of the bolts (apart from the bolt which will go into the bolt-hole in which the FA9TE is located), remove the tool by reversing steps 2-4.

Insert the last bolt and tighten.

Care should be taken not to drop any of the component parts when removing them from the flange joint. This action will prevent injuries to either the operator's lower limbs, or to passers-by.

6.4 EXAMINATION, MAINTENANCE AND STORAGE

- On return from each job and before allocation against subsequent work the completeness of the Equalizer FA9TE kit must be established and items examined to ensure that they are serviceable
- Any missing or damaged items are to be replaced as soon as possible and prior to the tool being used again
- Store the FA9TE tool in a cool dry place and ensure all machined surfaces are greased
- Return all items to carry case when not in use
- Ensure rollers, pins and wing remain grit free and that the rollers rotate freely
- Grease all moving parts regularly

1. Place the tool on a work bench and secure it in an upright position.
2. Remove 2 off the spring pins on the front of the main body as shown.
3. The wing can now be removed from the main body by sliding it forward.

4. Remove the circlip using a circlip pliers (not illustrated)

5. Remove the shaft and two bearings.

Inspect the bearing housing, shaft, and needle bearings for any sign of damage, dirt or grit. Clean then smear a small amount of grease onto the shaft and into the needle bearings.

Recomended grease - Rocol or Saphire Hi-Load.

6. Remove the spirol retaining clips from the lower shaft and slide the shaft out from the main body.

The roller and needle bearing can be removed through the upper section of the tool as shown.

Inspect the roller, shaft and needle bearings for any sign of damage, dirt or grit. Clean and then smear a small amount of grease onto the shaft and into the needle bearings.

Recommended grease -
Rocol Sapphire Hi-Load or equivalent Hi-Load Bearing grease
7. Re-assemble by reversing steps 2-6.

6.5 PARTS LISTS

	Part	Description	Qty
01	070233-01	Logo For Wing	01 ea
02	070273-01	Drop L. Knob Sticker	01 ea
03	070276-01	Body Plate Sticker L.	01 ea
04	070277-01	Body Plate Sticker R.	01 ea
05	070278-01	Eq. Logo For Boss	01 ea
06	220600-01	Leg Screw	01 ea
07	220602-01	Spirol Clip	01 ea
08	220700-01	Leg Screw Extension	01 ea
09	230100-01	Main Body	01 ea
10	230112-01	Spring Pin 5x36	01 ea
11	230200-01	Wing Arm	01 ea
12	230202-01	Plastic Insert	03 ea
13	230300-01	Front Roller Pin	01 ea
14	230400-01	Rear Roller	01 ea
15	230500-01	Rear Roller pin	01 ea

| Item | Part | Description | Qty |
| :---: | :---: | :--- | :--- | :--- |
| 16 | $230600-01$ | Needle Bearing | 03 ea |
| 17 | $230700-01$ | Circlip O/D40 | 02 ea |
| 18 | $230802-01$ | Buckle | 01 ea |
| 19 | $230803-01$ | Round Base Pad | 01 ea |
| 20 | $300401-01$ | M5 Sckt set screw | 02 ea |
| 21 | $400270-01$ | Ratchet | 01 ea |
| 22 | $400280-01$ | Ratchet Strap | 01 ea |
| 23 | $400901-01$ | Ctrs Screw | 03 ea |
| 24 | $632001-01$ | Spring Plunger | 01 ea |
| 25 | $713001-01$ | Release Knob | 01 ea |
| 26 | $901601-01$ | Spirol Clip | 02 ea |
| 27 | $903101-01$ | 6T H. Cylinder | 01 ea |

Item	Pa	Description	Qty
01	771110-01	Coupler	01 ea
02	903102-01	Puller Body	01 ea
03	903103-01	Puller Piston Rod	01 ea
04	903107-01	Compression Spring	01 ea
05	903108-01	Rod Wiper	01 ea
06	903109-01	Retaining Ring	01 ea
07	903110-01	6te Cylinder Service Kit	01 kit
08		Back-up Ring	01 ea
09		U-cup Seal	01 ea
10		Retaining Ring	01 ea

HP350S HAND PUMP

ITEM	PART No.	DESCRIPTION	KIT QUANTITY	PUMP QUANTITY
01	710101-01	PUMP HOUSI NG		01
	715100-01	SERVI CE KIT A:		
02		- OIL FILTER	01	01
03		- O-RING	01	01
04		- RESERVOIR BLADDER	01	01
05		- REFILLING PLUG	01	01
06	710601-01	RESERVOIR		01
	725200-01	SERVI CE KIT B:		
07		- TAIL BASE	01	01
08		- SCREW	04	04
09		- SPRING WASHER	04	04
10		- NUT	04	04
	715300-01	SERVI CE KIT C:		
11		- O-RING	01	01
12		- BACK-UP RING	01	01
13		- PUMP PISTON	01	01
14		- SNAP RING	01	01
15		- O-RING	01	01
16		- BACK-UP RING	01	01
17		- PUMP PISTON	01	01
	715400-01	SERVICE KIT D:		
18		- HANDLE	01	01
19		- YOKE	01	01
20		- PISTON PIN	01	01
21		- YOKE PIN	01	01
22		- RETAINING RING	01	01
23		- HANDLE GRIP	01	01
24		- SCREW	01	01
	715500-01	SERVICE KIT E:		
25 26		- YOKE BASE - SPRING PIN	01 01	01 01
	715600-01	SERVICE KIT F:		
27		- RELEASE VALVE SCREW	01	01
28		- WASHER	01	01
29		- SEAL	01	01
30		- SCREW	01	01
31		- RELEASE KNOB	01	01
32		- COUPLERS	01	01
33		- CHECK BALL	01	01
34	715700-01	SERVI CE KIT G:	02	02
35		- STEEL BALL	02	02
36		- OUTLET BALL SPRING	02	02
37		- COPPER WASHER	02	02
38		- VALVE COVER SCREW	02	02
39		- STEEL BALL	02	02

ITEM	PART No.	DESCRIPTION	$\begin{gathered} \text { KIT } \\ \text { QUANTITY } \end{gathered}$	PUMP QUANTITY
40	715800-01	SERVICE KIT H: - STEEL BALL	01	01
41		- SPRING END CAP	01	01
42		- L.P. SPRING	01	01
43		- O-RING	02	02
44		- OVERLOAD COVER SCREW	01	01
45		- CAP	02	02
46		- OVERLOAD COVER SCREW	01	01
47		- CONE SEAT	01	01
48		- CONE	01	01
49		- LONG SEPARATOR SPRING	01	01
	715900-01	SERVICE KIT I:		
50		- BASE PLATE	01	01
51		- SCREW	02	02
	716100-01	SERVICE KIT K:		
52		- SCREW	04	03
53		- SCREW	01	01
24		- SCREW	01	01
33	716200-01	CHECK BALL SERVICE KIT L:	04	03
54		- GAUGE COUPLER MALE	01	01
55		- GAUGE	01	01
	716300-01	SERVICE KIT M:		
56		- GAUGE COUPLER FEMALE	01	01
57		- COUPLER	01	01
58		- GAUGE PORT ADAPTOR	01	01

6.6 WEIGHTS AND DIMENSIONS

WEIGHTS

Tool with Hydraulic Cylinder
HP350S Hand Pump
Hydralic Hose
Plastic Carry-Case
GROSS KIT WEIGHT

$$
\begin{aligned}
& =15.5 \mathrm{~kg}(34.1 \mathrm{lbs}) \\
& =4.5 \mathrm{~kg}(9.9 \mathrm{lbs}) \\
& =1.0 \mathrm{~kg}(2.2 \mathrm{lbs}) \\
& =7.5 \mathrm{~kg}(16.5 \mathrm{lbs}) \\
& =28.5 \mathrm{~kg}(62.8 \mathrm{lbs})
\end{aligned}
$$

OVERALL DIMENSIONS

6.7 TROUBLESHOOTING

Problem: The tool is advancing but does not reach full pressure
$\rightarrow \quad$ Air could be present in the hydraulic system
$\rightarrow \quad$ Use the airlock removal procedure as follows:

1. Connect the hand pump to the tool with the hydraulic hose
2. Close the release valve on the pump, and prime the pump until the hydraulic cylinder is fully extended and a small pressure is achieved
3. With the hand pump held above the tool and the tool in an upright position, open the release valve causing any air that is within the system to be forced up through the pump and vented into the oil reservoir
4. Repeat steps 1-3 three or four times to ensure that all air is removed from the system and the tool will reach full working pressure
5. Disconnect the hand pump from the hydraulic hose, grip the baseplate of the hand pump body in a vice with the pump body vertical and the main handle at the top
6. Remove the four nuts holding the main handle and lift off
7. Grip the refilling plug with pliers and extract it by pulling and twisting simultaneously. Ensure the reservoir body is held down when removing the refilling plug as pulling up on the reservoir body will release the bladder within, and oil will spill out.
8. Fill the reservoir to the top with a good quality hydraulic oil of the grade 15 cSt
9. Reinsert the refilling plug, wipe away any oil, and reassemble by reversing the disassembly process

Problem: The friction pad is sliding in the circumference of the opposite flange as the tool is aligning the joint
$\rightarrow \quad$ Grit or dirt on wing, rollers or bearings
$\rightarrow \quad$ Wing is at full extension
$\rightarrow \quad$ Ensure the rollers are rotating freely and that there is no restriction to the rollers on the wing surfaces such as dirt or grit
$\rightarrow \quad$ Check that the wing is not at full extension when aligning the joint.
Ensure that there is enough extension left to allow the tool to expand as the joint is aligned.

Problem: The tool is attached and appears to be functioning properly, but the joint will not align
$\rightarrow \quad$ There may be something restricting the joint at a point close to the flanges

- The joint may require more than 9.0 T (90 kN) force to align
$\rightarrow \quad$ Check the area around the joint to establish if there is an obstruction to the joint
$\rightarrow \quad$ If the joint requires more force than that of the $9.0 \mathrm{~T}(90 \mathrm{kN})$ tool, then another method of aligning the joint should be adopted

6.8 APPLICATION DIMENSIONS

MINIMUM AND MAXIMUM FLANGE SIZES
Dimension A: must be between 93 and 228 mm ($3.66^{\prime \prime}$ and $9^{\prime \prime}$)
Dimension B: bolt-hole diameter must be $35.5 \mathrm{~mm}\left(1.40^{\prime \prime}\right)$ or greater

									316V」			W上tV」					W\＆TVA				${ }_{.1} \downarrow / \varepsilon$	${ }^{.} \mathrm{Z} / \mathrm{L}$	．8／غ	$\frac{\mathrm{7OO} \mathrm{\perp}}{\mathrm{SdN}}$	$\begin{aligned} & 00 \\ & \stackrel{y}{3} \\ & \text { B } \end{aligned}$
									． CL	＂OT	．8	．L	＂9	＂S	．t．	${ }^{\text {．} \varepsilon}$	．乙／t 乙	． 2	． C / L I	＂I					
									ヨ16V」			W上tV」					WITV」							7001	$\begin{aligned} & \text { n } \\ & \text { 号 } \\ & \text { 出 } \end{aligned}$
									${ }^{\text {．} \dagger \tau}$	． CL	＂01	． 8	＂L	＂ 9	＂S	．t	${ }^{\text {．}}$ ع	． Z / L 乙	．． 2	． Z / L L	＂$工$	${ }_{\mathrm{n}} \downarrow /$／	． Z / L	SdN	
									WLtVA							W\＆TVA								7001	$\underset{o}{0} \underset{i}{0}$
									．91	${ }^{\prime} \mathrm{DT}$	． 2 L	．0T	„8	${ }^{\text {L }}$ L	． 9	＂S	．1．	${ }^{\text {．}}$ ع	． C / L 乙	${ }_{\text {．}} \mathrm{Z}$	． Z / L L	＂ 1	．．†／غ	SdN	
									W－カV」				WıIVE											7001	
									．02	．8L	＂91	${ }^{\prime \prime}$ カT	， CL	＂0T	． 8	${ }^{\text {．} 2}$	．＂9	＂S	${ }_{\text {H }}$ †	${ }^{\text {．}}$ ¢	． I / L 乙	${ }_{\text {．} 2}$	． C / L I	SdN	
W上tサ」									WıIVA															7001	
．0¢	＂98	．„દ	． 82	${ }_{\text {ııZ }}$	＂OZ	＂8t	＂91	${ }^{\prime} \mathrm{t}$ T	． 2 L	＂OT	„8	＂L	＂9	＂S	＂t	${ }^{\prime} \varepsilon$	． C / L 乙	．．2	． C / L I	．„／L L	＂${ }^{\text {L }}$	＂ャ／E	． Z / L	SdN	\cdots
316V」		Wユ\＆t」							WıIV」															7001	
．08	． CL	．99	． $8 \downarrow$	． $0+7$	${ }^{\text {．} 98}$	．乙乙	． 82	${ }^{\text {．tı }}$	．＂OZ	．8L	＂91	${ }^{\prime} \mathrm{D}$ ¢	． CL	＂0t	． 8	． 1.	${ }^{19}$	＂S	${ }_{\text {H }}{ }^{\text {b }}$	${ }_{\text {，}} \varepsilon$	． Z / L 乙	．． 2	． Z / L L	SdN	のひ

S700 1 yof 3 ¢ $8 \forall \perp$ Ins 10 N	
$700 \perp \exists \perp 6 \forall\lrcorner$ yO」 \exists ¢	

									316V」				7001	\%
＂8t	${ }^{\text {．} 97}$	．tt	． 2 t	＂Ot	＂8६	＂98	．t¢	„乙を	．0¢	． 82	＂92	„ZZ	SdN	
316V」						W－tV」							7001	oi
．8t	＂97	．tt	． 2 t	＂Ot	， 88	＂98	${ }^{\text {．tE }}$	„乙を	＂0¢	． 82	＂92	． CZ	SdN	
316V」						W－tVA							7001	合念
＂8t	． 97	．tt	． 2 t	．Ot	${ }^{\text {＂} 88}$	${ }^{\prime \prime} 9 \varepsilon$	${ }^{\text {．}}$ ¢ $¢$	．$て$ 乙	＂0¢	．82	．92	． 2 Z	SdN	
316マ」						WLtṫ							7001	of
＂8t	${ }^{\text {．} 97}$	．tt	${ }_{\text {．} 2 \downarrow t}$	＂Ot	${ }^{\text {，} 88}$	${ }^{\prime \prime} 98$	${ }^{\text {．}}$ ¢ ε	．„と	＂0¢	．82	＂92	． CZ	SdN	
316V」							WIカVA						7001	능
．8t	．97	．tカt	． 2 t	＂Ot	${ }_{\text {，}} 8 \varepsilon$	${ }^{\prime \prime} 98$	${ }^{\text {．}}$ ¢ ε	．„を	${ }^{\prime} 0 \varepsilon$	． 82	＂92	． $\mathrm{\sim z}$	SdN	

																		31	6J					W上カV			7001	
												＂ヵて	،．zz	،．OZ	． 8 L	＂91	． bT	،．ZI	،．0t	．．8	،＂9	،．S	＂．t	، \sim / τ	،．$ع$	، C / L 乙	SdN	O
													316V」						W－1カV」								7001	合点
												＂tて	،てZ	،．OZ	． 8 L	،91	، $\dagger \mathrm{T}$	،．ZI	،0I	،．8	＂، 9	، S	＂t	．\sim / τ \＆	،¢	． C / L 乙	SdN	
													316V」									W－t＊」					7001	垥总
												．\quad ¢z	،．ટz	． 0 O	． $8 \mathrm{8L}$	＂91	．．„I	．،ZI	＂OT	،．8	، 9	،．S	＂t	،．乙／t E	،．$ع$	، 乙／L 乙	SdN	
												316V」								WLt＊							7001	응
												．ヵち	،．zz	،0Z	． 8 L	،91	،．ヵT	،．ZI	،OI	،．8	＂،9	،， S	＂．t	،．乙／t غ	．．ع	． C / L 乙	SdN	
												316V」									W上カ＊」						7001	No
												．„て	،．zz	．＂Oz	． 8 L	، 91	，„ T	، ${ }^{\text {ZI }}$	＂OT	،．8	، 9	،．S	＂．t	،．乙／t ε	，ε	． C / L 乙	SdN	
		316V」																		W上t＊							7001	븡
، 8 t	＂9t	，ttt	＂ても	، 07	． 88	، 98	，\dagger ¢	．،乙を	＂0¢	، 82	، 92	，„て	،．zz	،0Z	． 8 L	＂91	，¢ T	،．ZI	＂OT	،．8	＂، 9	＂，	． t	،．乙／¢ ع	،．ε	．$\sim /$／乙	SdN	
316V」																W上が」											7001	○唇
، 87	＂97	．ttt	＂で	، 00	، 8ε	، 9ε	، $\dagger \varepsilon$	، 乙દ	«0¢	، 82	، 92	，„t	،．乙て	،．OZ	． 81	،91	،．tI	،．ZI	＂OL	،8	＂، 9	＂¢	＂t	،ટ／ヶ \＆	،．ε	．\quad／L 乙	SdN	
316V」														W上tṫ													7001	oi
． $8 \mathrm{8t}$	． 90	،．tt	＂．てヤ	،．Ot	، 8ε	، 98	، \downarrow ¢	، 乙¢		، 82	، 92	．ıてz	،．zz	．＂Oz	． 81	، 91	，„ τ	، ${ }^{\text {ZI }}$	＂OT	،．8	＂،9	،．S	＂t	، z / L ع	،．ε	． C / L 乙	SdN	
316V」								W上tty							W上TV」												7001	os
． 81	． 97	．ttt	．،てヤ	، $0 \pm$	． 8ε	． 98	\cdots	، 乙と	．＂0¢	． 82	، 92	，$\dagger \mathrm{z}$	،．zz	． 0 O	． 81	＂91	，„ T	، CL	＂OT	．،8	، 9	،．S	＂t	،．乙／t ع	، $غ$	． C / L 乙	SdN	
W－t＊							WıTV」																				7001	Hig 点
، 8 8	． 90	，¢tt	．،てヤ	، 0 Ot	، 88	． 98	，\downarrow ¢	، 乙と	．＂0¢	． 82	، 92	，$\dagger \mathrm{z}$	،．zz	．＂Oz	． 81	＂91	，„ I	، ${ }^{\text {ZI }}$	＂OT	．،8	، 9	،．S	＂．t	．$\sim / \mathrm{L} / \mathrm{L}$	،．ε	． C / L 乙	SdN	
																												$\varepsilon^{*} L$

